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 Abstract.- The development of new prediction models to identify potential modified residues are based on 
different machine learning methods. Primary sequences, biochemical properties of the amino acids and 3D structural 
information of proteins are used to evolve prediction models. The information about the significant residues to govern 
different biological processes has not been considered yet to develop a prediction model. MAPRes is an efficient tool 
which has been utilized to mine significant residues and association patterns for surrounding amino acids of some 
specific modifications on hydroxyl and amino group such as phosphorylation and acetylation. The primary sequences 
of the proteins and association patterns of surrounding amino acids of modified residues may use to train new dataset 
for the development of an efficient and reliable prediction model. Biophysical and biochemical properties of the amino 
acids are also important parameters for the prediction of the modified residues. This study proposes, GEARS (Genetic 
Evolution of ClAssifers by Learning Residue Rules and Sequences), a classifier rule learning model, which considered 
different machine learning techniques such as ANNs, HMM and MAPRes were considered for the development of 
GEARS model. The GEARS, by combining these models, will have the capacity to reduce the false negative and 
positive predictions.  
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INTRODUCTION 
 

 Proteins are multi-functional molecules 
which often perform diverse functions (Jeffery, 
1999). The 3D structural changes are one of the 
significant factor behind the functional switch of 
proteins (Bork et al., 1998; Attwood, 2000; Li et al., 
2004). These changes are regulated by a number of 
biochemical processes, particularly posttranslational 
modifications (PTMs) such as phosphorylation, 
sulfation, acetylation, methylation, glycosylation 
etc.  (Varki and Kornfeld, 1980; Boynton et al., 
2001; Berlot et al., 2002; Yuan et al., 2003). These 
PTMs are usually take place at amino group, 
hydroxyl group, carboxyl group and side chain of 
the amino acids. The amino group of the amino  
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acids modified by acetyl, methyl, formyl groups and 
etc. while modifications on hydroxyl group are O-
Linked glycosylation and phosphorylation (Ahmad 
et al., 2006; Butt et al., 2011; Schiza et al., 2013). 
These modifications are vitally important to regulate 
various biological processes and the development of 
the prediction models to identify the potential 
modification sites for different types of 
modifications are equally important. To analyze the 
environment and potential modified sites for 
different PTMs several machine learning techniques 
and statistical models have been developed that are 
playing vital role to understand the structure-
function relationship of proteins (Christlet and 
Veluraja, 2001; Blom et al., 2004; Fujii et al., 2004 
Lee et al., 2006; Qazi et al., 2006; Wong et al., 
2007). The general classifications of these statistical 
and computational models are prediction, 
classification and clustering techniques. Indeed 
these models have assisted biologists to provide 
information about the complex biological processes 
that are extremely difficult to find out utilizing 
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existing experimental and/or theoretical studies. 
MAPRes (Mining Association Patterns among 
preferred amino acid Residues in the vicinity of 
amino acids targeted for post-translational 
modifications) is a useful computational model that 
can be utilize to mine association rules/patterns for 
significantly preferred amino acids in the vicinity of 
specific PTM sites (Ahmad et al., 2008a). MAPRes 
is one of the example of clustering type protein 
sequence analyses. 
 MAPRes has been utilized to mine 
association rules/patterns for the surrounding amino 
acids that are biologically important in the vicinity 
of phosphorylation, glycosylation and acetylation 
sites (Ahmad et al., 2008a,b, 2009; Khawaja et al., 
2008; Iqbal et al., 2013). The upgraded version of 
MAPRes has also been released (unpublished). This 
version of MAPRes provides mechanism to mine 
association rules by utilizing the properties of 
neighboring amino acids. This version of MAPRes 
has been applied to study the acetylation sites based 
on the properties of surrounding amino acids such as 
polarity and charge (Iqbal et al., 2013). These 
studies have encouraged that association rules can 
be used to build a better classifier by combining it 
with sequence learning. 
 Indeed existing predictive and descriptive 
analyses methods are either based on data learning 
method (Blom et al., 2004) or data mining for 
association analyses (Ahmad et al., 2008a). This 
suggests, in either case, these methods lack some 
significant aspects associated with data. Hence new 
methods are required to develop prediction models, 
utilizing the data derived from previous analyses in 
form of certain rules/patterns coupled with protein 
sequence data, by developing an assembly of 
learning schemes for different types of data. The 
concept of combinatorial classification for the 
development of prediction models has already been 
practiced such as DictyOGlyc (Gupta et al., 1999). 
In this prediction method, the jury of 6 ANNs with 
different configurations and architectures were 
utilized but the learning data was in form of protein 
sequence windows only.  
 This study reports the GEARS model which 
is a novel machine leaning simulator (under 
development). The development phases are divided 
into various functional and reportable deliverable. 

This study will report following functional 
deliverables, conceptual overview of the simulator 
and its utilization scheme, bio-data preprocessing 
modules, MAPRes and neural network subsystems. 
Functional modules (MAPRes and Neural Network) 
reported here can be used to train a classifier based 
on the induction of data as well as significant 
biological rules capable to perform prediction. 
These reported modules will use to develop a novel 
prediction model with probably highest rate of 
accuracy and efficiency. In this study, a test dataset 
of phosphorylated-tyrosine (P-Tyr) modified by 
EGFR kinase were brought into account to validate 
the function and hypothesis of GEARS model. Not 
only the GEARS model but this test module too 
have the capacity to train data for the prediction of 
other modified residues. The availability of the data 
is the key factor for the training of these suggested 
modules.  
 

MATERIALS AND METHODS 
 
The GEARS model 
 GEARS, is a classifier evolution and learning 
manager that work on the bases of parallel and 
distributed computing. The structure of the GEARS 
is designed on layered and plug-in architecture. The 
layered architecture will have the capacity to handle 
the computational complexities of genetic algorithm 
to evolve respective models while plug-in 
architecture will provide the flexibility to handle 
different types of data servers. Software artifacts of 
GEARS system are grouped into three layers (data 
repository layer, windows application module layer 
and windows service module layer) (Fig. 1). On the 
bases of these layers, the GEARS model can be 
integrated into three basic modules which are 
further divided into some subsystems. The 
development of GEARS model is executing in C# 
(Fig. 2.). The overview of the main modules and 
subsystems of GEARS model are described below. 
 
Windows application modules layer 
 In this module many software artifacts are 
composed in a group. These software artifacts are 
Classifier Evolution and Learning Manager (CEL 
Manager), Job Monitoring Console (JMC) and 
Project Registry Explorer (PRE). 
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 Fig. 1. A block diagram of GEARS 
System containing data repository layer, 
windows application module layer and windows 
service module layer. 

 

 
 

 Fig. 2. System view and architecture of 
GEARS showing the data flow and training 
modules of protein sequence learning by ANNs 
and HMMs and rules learning mined by 
MAPRes and finally the evolution of classifiers 
and combining the three models into a single 
model.  

 
 The CEL Manager will provide an interface 
to human user to create and configure GEARS 
project. In this module, after the defining the 
project, rest of the configurations such project 
registry and repositories will be created by GEARS 
itself. This application will also provide the 
interface to run the learning and evolution 
simulation. CEL Manager will communicate with 
configuration parameters like the software artifacts 

(Services) in Windows Service Modules Layer 
(WSML). Services in WSML will be responsible to 
configure and run the respective jobs. Data 
management of input and output data sources will 
be mange by Data Repository Layer (DRL) that will 
be based on plug-in architecture. The user required 
plug-ins will be select at the time of project creation 
and application will load the installed plug-ins. This 
will make the GEARS’ framework flexible enough 
to handle any type of data server. 
 In next step, Job Monitoring Console 
application will provide the interface to illustrate the 
job status, progress of dot net and grid threads, 
learning curves etc. This application receives data 
streams from Activity Log Service (ALS) (Fig. 2). 
 In last step, the Project Repository Explorer 
(PRE) will be utilize to browse the reports, 
configurations and architecture of evolved classifier 
candidate. This explorer will also provide the 
support to generate and compile the selected 
candidate as a dot net (DLL) component. 
 
Windows service modules layer 
 This layer will consist of different Windows 
services which are the part of GEARS subsystems 
such as MAPRes Evolution Engine Service, ANN 
Evolution Engine Service, HMM Evolution Engine 
Service and Activity Log Service (Fig. 2). The idea 
behind splitting of GEARS application is to balance 
the computational load in distributed fashion. Each 
distribution is a grid application (except for Activity 
Log Service) and will be responsible to perform 
their specific tasks. Application Log Service which 
is an interface between other GEARS services, CEL 
Manager and Job Monitoring Console. This service 
will have the responsibility to entertain incoming 
data streams from other GEARS services and CEL 
Manager, writes in a log database and stream them 
to Job Monitoring Console application. The data 
streams will contain the information about the status 
and progress of each dot net and grid thread 
executing in other services. 
 The MAPRes, ANN and HMM Evolution 
Engine Services are the examples of grid services 
and the development of these models are based on 
genetic algorithm. These Windows evolution engine 
services are responsible to evolve their respective 
classifier models e.g., MAPRes Evolution Engine 
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Services will evolve MAPRes classification model. 
Each model will be executed as grid thread and to 
enhance the further computational efficiency the dot 
net threads will be executing within each candidate 
model.  
 
Data repository layer (DRL) 
 All Windows applications and services which 
are the members of GEARS system, will 
communicate with DRL with exception for ALS and 
JMC. Activity log database is not the part of DRL 
because log database can be viewed as temporary 
storage. On every execution of CEL Manager, 
activity log database will be cleaned. Whereas, data 
objects in DRL will persist in their states as long as 
project registry is not deleted by Project Registry 
Manager. In other words, each project will have its 
own unique DRL profile and will be treated as 
internal storage. As mentioned earlier that access to 
data objects in DRL will be performed through 
plug-in interface, means the GEARS implementa-
tion is not bound to a specific arrangement of DRL 
data objects and their database servers. 
 DRL management plug-ins is the 
implementation of DRL management interface 
library. MYSQL server based DRL management 
(MySQLDRL) plug-in will be implemented as 
default. Each data object in MYSQLDRL will be 
treated as a separate database, so that each data 
object can utilize maximum data storage. If required 
in any study to have different management strategy 
and/or database server, one can implement his/her 
own DRL management plug-in by extending 
interfaces defined in DRL management Interface 
Library. 
 Data object in DRL are following: MAPRes 
Data Object, ANN Data Object, HMM Data object, 
Input Source Data Object, Global Genetic 
Algorithm (Global GA) Data Object, Project 
Configuration Log and Project Registry (Fig. 2). 
 Data Objects associated to MAPRes, ANN 
and HMM are responsible to hold information on 
the respective model architecture and 
configurations, learning curves and error rates, 
training, validation and testing data sets, 
testing/validation reports for each candidate against 
its ModelID, Generation No. and initial conditions. 
Whereas, Global GA Data Object will be 

responsible to persist information on overall 
learning profile including learning curves and error 
rates of candidate models in a combinatorial way 
(ensemble mode), accommodating the new 
configurations of the data including size of peptides, 
training/validation/testing datasets. 
 Several components of GEARS have been 
developed and tested such as Project Creation 
Module, Main Console Module and Ensemble 
Learning Module. In current study, the justifications 
of relations behind the GEARS is performed by 
considering the assembled learning using ANN and 
MAPRes subsystems to evolve a model to predict 
the modification potential of P-Tyr data modified by 
EGFR kinase. 
 
Test model to predict the modification potential of 
P-Tyr data 
 A part of the proposed model was tested by 
developing a prediction-model for the prediction of 
the P-Tyr modified by EGFR kinase. The P-Tyr data 
based on EGFR kinase was obtained from 
Phospho.ELM. Data preprocessing and cleaning 
was performed by using Data Inconsistency 
modules of MAPRes in order to remove the 
inconsistencies in downloaded data from 
Phospho.ELM.  
 After cleaning of data, the MAPRes model 
was utilized to mine the association patterns from 
the resultant dataset. MAPRes mine these 
association patterns at different support levels (5%, 
10%, 15%, 20% and 25%). The resultant dataset of 
P-Tyr were also take into account to make a peptide 
dataset of modified residues, the length of each 
peptide were consist of 21 amino acids (modified 
residue at 0 position and 10 amino acids at each 
side). This peptide dataset were utilized to train and 
validate the neural networks. The association 
patterns mined by MAPRes were compared with 
each peptide of the peptide dataset to find the 
suitable match. The association patterns and 
peptides which were matched, combine as a single 
record. To generate the binary form of the amino 
acids, sparse encoding was applied on the peptide 
dataset. For each amino acid a binary code of 21 
digit was generated hence a 420 digit code represent 
a single peptide. The position “0” was not 
considered for sparse encoding as it is populated 
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only with Tyr. The flow diagram for the current 
study are shown in Figure 3. 
 

 
 

 Fig. 3. Flow diagram of the data trained 
by utilizing ANN. The MAPRes rules/patterns 
and peptide dataset were generated from 
assembled dataset of P-Tyr modified by EGFR 
kinase. The sparse coding apply on the peptide 
and rules dataset to generate the binary code of 
the amino acids. On the bases of MAPRes rules 
the biasness factor introduce against each 
peptide for better learning of the ANNs. Boot 
strapping were performed for the validation and 
training of the dataset.  

 
 The biasness factor was added against each 
encoded peptide on the bases of MAPRes rules for 
effective learning of neural network. After the 
calculation of the biasness factor, the bootstrap 
sampling process was introduced to train and 
validate the peptide dataset. The training of the 
neural network was performed by varying the values 
of the sigmoidal lambda and root mean square 
(RMS) error. There were 21 experiments in total 
was performed by changing these values to identify 
the neural network configuration with optimized 
values, maximizing Mathew’s Correlation 

Coefficient (MCC), sensitivity, specificity, accuracy 
and minimizing RMS error (Table I). 
 
Table I.- Parameter alterations for training of ANNs. 
 

Sr. Sigmoidal Lambda Acceptable RMS Error 

   
1.  0.01 0.07 
2.  0.18 
3.  0.02 0.07 
4.  0.075 
5.  0.09 
6.  0.1 
7.  0.1 
8.  0.12 
9.  0.13 
10.  0.03 0.05 
11.  0.06 
12.  0.07 
13.  0.08 
14.  0.1 
15.  0.11 
16.  0.12 
17.  0.04 0.05 
18.  0.05 
19.  0.08 
20.  0.1 
21.  0.05 0.04 
   

 

Table II.- Association patterns mined by MAPRes. 
 

Sr. Association rule Support level 
   
1.  <E,-3><V,1>=>PP1 5 
2.  <G,-6><E,-3>=>PP 5 
3.  <G,-6><V,1>=>PP 5 
4.  <E,-3>=>PP 20 
5.  <G,-6>=>PP 20 
6.  <V,1>=>PP 24 
7.  <F,-4>=>NP2 5 
8.  <F,-9>=>NP 5 
9.  <I,2>=>NP 5 
10.  <I,-7>=>NP 5 
11.  <K,-3>=>NP 5 
12.  <Q,8>=>NP 5 
13.  <R,5>=>NP 5 
   

1PP represents positively P-Tyr 
2NP represents non P-Tyr 
 

RESULTS AND DISCUSSION 
 
 The GEARS simulator tends to evolve amino 
acid sequence  and  association  rule.  The classifiers  
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Table III.- Input and output parameters for training of ANNs. 
 

Sr. No Sigmoidal Lambda Acceptable RMS Error MCC Sensitivity Specificity Accuracy 
       

1.  0.03 0.11 0.538703 1 0.719697 0.764331 
2.  0.04 0.1 0.538703 1 0.719697 0.764331 
3.  0.04 0.08 0.545951 1 0.727273 0.770701 
4.  0.03 0.12 0.545951 1 0.727273 0.770701 
5.  0.03 0.08 0.553342 1 0.734849 0.77707 
6.  0.03 0.1 0.553342 1 0.734849 0.77707 
7.  0.03 0.07 0.592655 1 0.772727 0.808917 
8.  0.02 0.13 0.627409 1 0.80303 0.834395 
9.  0.02 0.1 0.646096 1 0.818182 0.847134 
10.  0.04 0.05 0.655806 1 0.825758 0.853503 
11.  0.04 0.05 0.655806 1 0.825758 0.853503 
12.  0.03 0.06 0.67603 1 0.840909 0.866242 
13.  0.02 0.12 0.732015 1 0.878788 0.898089 
14.  0.02 0.09 0.770131 1 0.901515 0.917198 
15.  0.02 0.07 0.770131 1 0.901515 0.917198 
16.  0.02 0.1 0.783741 1 0.909091 0.923567 
17.  0.05 0.04 0.797856 1 0.916667 0.929936 
18.  0.03 0.05 0.797856 1 0.916667 0.929936 
19.  0.02 0.075 0.797856 1 0.916667 0.929936 
20.  0.01 0.18 0.800714 0.68 1 0.949045 
21.  0.01 0.07 0.8436007 1 0.939394 0.9490446 

       
 

are evolve in this method by utilizing genetic 
algorithm. The classifiers which are evolved as a 
jury of machine learning models are MAPRes, 
ANNs and HMMs. GEARS uses the concept of 
heterogeneous jury of aforementioned models. 
Every model have its own inherited strengths and 
different nature of learning e.g., ANNs are empirical 
and connectionist system, HMMs have statistical 
grounds whereas MAPRes offers a rule learning 
mechanism from unsupervised to supervised 
learning. This combinatorial scheme of three 
machine learning techniques in GEARS provides it 
the capability to accommodate complexities in 
protein data. 
 In this specific case of study, MAPRes and 
neural networks which are the two basic proposed 
modules of GEARS methodology were utilized to 
perform sequence learning with rule inductions. 
Association rules which were used for rule 
induction in the form of biasness factor were 
generated by MAPRes and the sequence learning 
was performed by using neural networks. 
 In first step of this method, the association 
rules were generated at various support levels by 
using MAPRes (Table II). At different support 

levels, some similar association rules were found 
that were removed from the list and kept only one 
rule that have the maximum support level. After 
removing the similar rules from the list, the 
remaining association rules were have only three 
support levels 5, 20 and 24. There were only 13 
association rules were left in the list and out of these 
total association rules, 6 were found for positively 
P-Tyr (PP) and 7 for non-phosphorylated Tyr (NP). 
Among the 6 association rules for PP, 3 were found 
at 5% support level, 2 were found at 20% support 
level and 1 at 24% support level. Whereas, in case 
of NP all association rules were found at 5% support 
level. The association patterns indicated that the Val 
at +1 position were found at maximum support level 
(24%), while, Glu at -3 position and Gly at -6 
position have considerably high support level. It is 
interestingly noticed that all these three amino acids, 
found in surrounding of PP with maximum support 
level are non-polar.  
 There were 21 experiments were performed 
to train the neural networks by changing the values 
of the sigmoidal lambda and root mean square 
(RMS) error (Table III). These trainings of the data 
are critical for the prediction of potential P-Tyr. As 
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mentioned earlier sigmoidal Lambda and acceptable 
RMS were the training configurations, whereas the 
training performance of the neural networks was 
measured on the bases of following performance 
parameters such as Mathew’s correlation coefficient 
(MCC), sensitivity, specificity and accuracy. These 
experiments were conducted with 5 different values 
of sigmoidal lambda. Variation in root mean square 
(RMS) error was recorded during the learning 
phase. The value of sigmoid lambda ranges from 
0.01 to 0.04 and RMS error from 0.04 to 0.18 
correspondingly set the value of accuracy. The 
experiment 17 to 21 have shown the highest values 
of the accuracy than the previous experiments 
(Table III). It is indicating that the training of the 
data was good in these experiments. The maximum 
learning of the data was done in last experiment 
with maximum value of accuracy. The finally 
selected experiment for prediction which has MCC 
= 0.8436007, Sensitivity = 1, Specificity = 0.939394 
and Accuracy = 0.9490446. This finally selected 
trained dataset will have the capacity to develop a 
reliable prediction model of potential P-Tyr 
residues. 
 In conclusion, the development of new 
computational prediction models by considering the 
combinatorial approaches is the need of the hour to 
improve the accuracy of the prediction models. This 
study proposes the architecture of the GEARS 
model which is designed to combine the different 
data learning and data mining techniques. The 
GEARS model will have the capacity to predict the 
modified residues with better accuracy. A part of the 
GEARS model have been developed and results of 
this module have shown a good values of data 
learning or accuracy. This test module were utilized 
to train the data of P-Tyr but it also have the 
capacity to execute on other modified residues such 
as Ser, Thr, Lys and Gln. The extensive data 
available for phosphorylation of OH- group compels 
to investigate this particular study. The modification 
on NH3- group such as acetylation and methylation 
are equally important and control the various 
function of the proteins. In future, the data from 
other modification will also be considered for the 
training of developed module of the GEARS.   
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